
Projectile Motion and Drag Force

New Mexico
Supercomputing Challenge

Final Report
April 3rd, 2019

Team Number 21

La Cueva High School

Team Members
David Feng
Blake Watson
Luke Xue
Brad Zhang

Teacher
Mrs. Terri Jones

Executive Summary
Problem Investigated

The goal was to create an accurate physics model that would be able to predict landing

sites of projectiles based on a number of factors, including wind speed, surface area, launch

velocity and angle, and wind direction and speed. This has a number of application, including

space launch cases, sports application, and military applications. Another common problem is to

find the launch angle and velocity based upon the crash site, which our program is able to do.

Solution Method
Most of our equations focus upon the drag force of an object. The drag force is the main

factor differentiating our program from extremely simplistic physics models. It can be expressed

as FD and is always a vector working in the opposite direction of the velocity vector. With these

factors in mind, the Drag Force Magnitude equation can be expressed as: FD=½ CDρAv2, where

CD is the drag coefficient, ρ is the air density, A is the cross sectional area of the projectile

object, and v is the object’s speed. All of these are in standard units for their respective values.

Based upon this equation and knowing that Drag force works directly against the velocity of an

object, the Net Force equation can be shown as ΣF = mg - ½ CDρAv2 where both g and F are

vectors in the same direction as the velocity vector of the object. Using this and the vector object

library found within C++, our program accurately calculates the projected landing site of the

object when given a number of variables
Test Verification

Even though our methods were based upon widely-used physics laws and equations, we

attempted to verify test data through a number of ways. Manual checking of numbers was used

to ensure that our program could utilize any known equations properly, and a number of other

online tools and software that accomplishes similar goals was used to compare results. While we

did not modify results based upon other numbers found by other calculators and software, we did

include them in our results as a baseline to be compared to our own results. While other software

attempts to accomplish the same goal, the discrepancies in outputs can often be explained

through a combination of differing techniques and perhaps a more simplistic equation and

method that is not suited to take into account wind resistance and drag force.

Test Cases: Single-Launch
Test 1 (Control)

 Mass: 40 kilograms

 Drag Coefficient: 0.47

 Air Density: 1.225 kg/m^3

Cross-sectional Area: 0.15 m^2

 Launch Speed: 20 m/s

 Launch Angle: 35 degrees above horizontal

 Launch Direction: 0 degrees

 Wind Speed: 0 m/s

 Wind Direction: 0 degrees

 Range: 37.2711 meters (website data shows 37.45)

 Landing Direction: 0 degrees

 Air Time: 2.325 seconds

Test 2 (lower mass than Test 1)

 Mass: 4 kilograms

 Drag Coefficient: 0.47

 Air Density: 1.225 kg/m^3

Cross-sectional Area: 0.15 m^2

 Launch Speed: 20 m/s

 Launch Angle: 35 degrees above horizontal

 Launch Direction: 0 degrees

 Wind Speed: 0 m/s

 Wind Direction: 0 degrees

 Range: 29.8808 meters (website data shows 31.18)

 Landing Direction: 0 degrees

 Air Time: 2.184 seconds

Test 3 (greater cross-sectional area than Test 1)

 Mass: 40 kilograms

 Drag Coefficient: 0.47

 Air Density: 1.225 kg/m^3

Cross-sectional Area: 10 m^2

 Launch Speed: 20 m/s

 Launch Angle: 35 degrees above horizontal

 Launch Direction: 0 degrees

 Wind Speed: 0 m/s

 Wind Direction: 0 degrees

 Range: 14.7376 meters (website data shows 16.637)

 Landing Direction: 0 degrees

 Air Time: 1.72 seconds

Test 4 (greater launch speed than Test 1)
 Mass: 40 kilograms

 Drag Coefficient: 0.47

 Air Density: 1.225 kg/m^3

Cross-sectional Area: 0.15 m^2

 Launch Speed: 50 m/s

 Launch Angle: 35 degrees above horizontal

 Launch Direction: 0 degrees

 Wind Speed: 0 m/s

 Wind Direction: 0 degrees

 Range: 203.011 meters (website data shows 209.07)

 Landing Direction: 0 degrees

 Air Time: 5.594 seconds

Test 5 (lower launch angle than Test 1)

 Mass: 40 kilograms

 Drag Coefficient: 0.47

 Air Density: 1.225 kg/m^3

Cross-sectional Area: 0.15 m^2

 Launch Speed: 20 m/s

 Launch Angle: 25 degrees above horizontal

 Launch Direction: 0 degrees

 Wind Speed: 0 m/s

 Wind Direction: 0 degrees

 Range: 30.5762 meters (website data shows 30.69)

 Landing Direction: 0 degrees

 Air Time: 1.716 seconds

Test 6 (greater launch angle than Test 1)

 Mass: 40 kilograms

 Drag Coefficient: 0.47

 Air Density: 1.225 kg/m^3

Cross-sectional Area: 0.15 m^2

 Launch Speed: 20 m/s

 Launch Angle: 45 degrees above horizontal

 Launch Direction: 0 degrees

 Wind Speed: 0 m/s

 Wind Direction: 0 degrees

 Range: 39.4775 meters (website data shows 39.73)

 Landing Direction: 0 degrees

 Air Time: 2.861 seconds

Test 7 (greater launch angle than Test 6)

 Mass: 40 kilograms

 Drag Coefficient: 0.47

 Air Density: 1.225 kg/m^3

Cross-sectional Area: 0.15 m^2

 Launch Speed: 20 m/s

 Launch Angle: 55 degrees above horizontal

 Launch Direction: 0 degrees

 Wind Speed: 0 m/s

 Wind Direction: 0 degrees

 Range: 37.0302 meters (website data shows 37.31)

 Landing Direction: 0 degrees

 Air Time: 3.312 seconds

Test 8 (Test 1 without air resistance)

 Mass: 40 kilograms

 Drag Coefficient: 0.47

 Air Density: 1.225 kg/m^3

Cross-sectional Area: 0.15 m^2

 Launch Speed: 20 m/s

 Launch Angle: 35 degrees above horizontal

 Launch Direction: 0 degrees

 Wind Speed: 0 m/s

 Wind Direction: 0 degrees

 Range: 38.3855 meters (website says 38.36)

 Landing Direction: 0 degrees

 Air Time: 2.343 seconds

Test 9 (Test 2 without air resistance) (lower mass than Test 8)

 Mass: 4 kilograms

 Drag Coefficient: 0.47

 Air Density: 1.225 kg/m^3

Cross-sectional Area: 0.15 m^2

 Launch Speed: 20 m/s

 Launch Angle: 35 degrees above horizontal

 Launch Direction: 0 degrees

 Wind Speed: 0 m/s

 Wind Direction: 0 degrees

 Range: 38.3855 meters (website says 38.36)

 Landing Direction: 0 degrees

 Air Time: 2.343 seconds

Prediction Cases
 Mass: 5 kilograms

 Drag Coefficient: 0.47

 Air Density: 1.225 kg/m^3

Cross-sectional Area: 0.25 m^2

Case 1: No wind (Control)

 Launch Speed: 20 m/s

 Launch Angle: 40 degrees above horizontal

 Launch Direction: 0 degrees

 Wind Speed: 0 m/s

 Wind Direction: 0 degrees

 Range: 28.6682 meters

 Landing Direction: 0 degrees

 Air Time: 2.381 seconds

Case 2: 10 m/s Wind at 45 degrees from launch direction

 Launch Speed: 20 m/s

 Launch Angle: 40 degrees above horizontal

 Launch Direction: 0 degrees

 Wind Speed: 10 m/s

 Wind Direction: 45 degrees

 Range: 33.6821 meters

 Landing Direction: 5.20345 degrees

 Air Time: 2.422 seconds

Case 3: 10 m/s Wind at 90 degrees from launch direction

 Launch Speed: 20 m/s

 Launch Angle: 40 degrees above horizontal

 Launch Direction: 0 degrees

 Wind Speed: 10 m/s

 Wind Direction: 90 degrees

 Range: 28.0928 meters

 Landing Direction: 11.4065 degrees

 Air Time: 2.353 seconds

Case 4: 10 m/s Wind at 180 degrees from launch direction

 Launch Speed: 20 m/s

 Launch Angle: 40 degrees above horizontal

 Launch Direction: 0 degrees

 Wind Speed: 10 m/s

 Wind Direction: 180 degrees

 Range: 18.7246 meters

 Landing Direction: 0 degrees

 Air Time: 2.289 seconds

Projectile Aiming Program

Test 1: Prediction Case 1

 Mass: 5 kilograms

 Drag Coefficient: 0.47

 Air Density: 1.225 kg/m^3

Cross-sectional Area: 0.25 m^2

 Range: 28.6023 meters

 Landing Direction: 0 degrees

 Wind Speed: 0 m/s

 Wind Direction: 0 degrees

 Launch Speed: 19.9675 m/s

 Launch Angle: 40 degrees above horizontal

 Launch Direction: 0 degrees

Test 2: Prediction Case 2

 Mass: 5 kilograms

 Drag Coefficient: 0.47

 Air Density: 1.225 kg/m^3

Cross-sectional Area: 0.25 m^2

 Range: 33.6703 meters

 Landing Direction: 5.20345 degrees

 Wind Speed: 10 m/s

 Wind Direction: 45 degrees

 Launch Speed: 19.99 m/s

 Launch Angle: 40 degrees above horizontal

 Launch Direction: 0.195124 degrees

Test 3: Prediction Case 3

 Mass: 5 kilograms

 Drag Coefficient: 0.47

 Air Density: 1.225 kg/m^3

Cross-sectional Area: 0.25 m^2

 Range: 28.074 meters

 Landing Direction: 11.4065 degrees

 Wind Speed: 10 m/s

 Wind Direction: 90 degrees

 Launch Speed: 19.9754 m/s

 Launch Angle: 40 degrees above horizontal

 Launch Direction: 0.22443 degrees

Test 4: Prediction Case 4

 Mass: 5 kilograms

 Drag Coefficient: 0.47

 Air Density: 1.225 kg/m^3

Cross-sectional Area: 0.25 m^2

 Range: 18.6258 meters

 Landing Direction: 0 degrees

 Wind Speed: 10 m/s

 Wind Direction: 180 degrees

 Launch Speed: 19.9182 m/s

 Launch Angle: 40 degrees above horizontal

 Launch Direction: 0 degrees

Code
Projectile Simulation Header File:
#pragma once

#include <string>

using namespace std;

double deg_to_rad(double degrees);

double rad_to_deg(double radians);

void motion_calculation(double launch_angle, double initial_velocity, double launch_direction, double wind_speed,

double wind_direction, double& ranges, double& landing_direction);

string output_parameters();

Projectile Simulation Function:
#include "VectorMath.h"

#include <vector>

#include <string>

#include <sstream>

#include <iomanip>

constexpr double pi = 3.14159265358979324;

constexpr double drag_c = 0.47;

constexpr double air_dense = 1.225;//kg/m^3

constexpr double x_area = 0.15;//m^2

constexpr double mass = 40;//kg

using namespace std;

//angle unit conversion functions

double deg_to_rad(double degrees)

{

return pi * degrees / 180.0;

}

double rad_to_deg(double radians)

{

return 180.0 * radians / pi;

}

void motion_calculation(double launch_angle, double launch_speed, double launch_direction, double wind_speed,

double wind_direction, double& range, double& landing_direction)

{

//x-component is horizontal velocity along the original launch path

//y-component is horizontal velocity perpendicular to original launch path

//z-component is vertical velocity

vector<double> velocity{ 0, 0, 0 };

vector<double> position{ 0, 0, 0 };

vector<double> wind{ 0, 0, 0 };

vector<double> acceleration;

velocity[0] = launch_speed * cos(deg_to_rad(launch_angle)) * cos(deg_to_rad(launch_direction));//sets

x-velocity m/s

velocity[1] = launch_speed * cos(deg_to_rad(launch_angle)) * sin(deg_to_rad(launch_direction));//sets

y-velocity m/s

velocity[2] = launch_speed * sin(deg_to_rad(launch_angle));//sets z-velocity m/s

double speed = launch_speed;//sets velocity

wind[0] = wind_speed * cos(deg_to_rad(wind_direction));//sets x-velocity m/s

wind[1] = wind_speed * sin(deg_to_rad(wind_direction));//sets y-velocity m/s

double accel_drag; //initialization: how much speed lost due to drag

double dt = 0.001; //time interval between calculations

//simulates projectile motion in air

do

{

//takes care of position change using velocity

position = vector_add(position, scalar_multiplication(dt, velocity));

//defines acceleration due to drag and gravity

vector<double> wind_relative_velocity = vector_subtract(wind, velocity);

accel_drag = 0.5 * drag_c * air_dense * x_area * pow(magnitude(wind_relative_velocity), 2) /

mass;

acceleration = scalar_multiplication(accel_drag, normalize(wind_relative_velocity));

acceleration[2] -= 9.8;

//changes velocity due to acceleration

velocity = vector_add(velocity, scalar_multiplication(dt, acceleration));

} while (position[2] > 0);//repeat while hasn't hit ground yet

//calculates landing distance and direction

//uses references to "return" multiple values

position.pop_back();

range = magnitude(position);

landing_direction = rad_to_deg(atan2(position[1], position[0]));

}

string output_parameters()

{

stringstream ss;

ss << setw(22) << "Mass: " << setw(10) << mass << " kilograms" << endl

<< setw(22) << "Drag Coefficient: " << setw(10) << drag_c << endl

<< setw(22) << "Air Density: " << setw(10) << air_dense << " kg/m^3" << endl

<< setw(22) << "Cross-sectional Area: " << setw(10) << x_area << " m^2" << endl

<< endl;

return ss.str();

}

Single Launch Test
#include "pch.h"

#include "VectorMath.h"

#include <vector>

#include <iostream>

#include <iomanip>

#include <sstream>

constexpr double pi = 3.14159265358979324;

constexpr double drag_c = 0.47;

constexpr double air_dense = 1.225;//kg/m^3

constexpr double x_area = 0.25;//m^2

constexpr double mass = 5.0;//kg

constexpr double launch_speed = 20.0;//m/s

constexpr double launch_angle = 40.0;//degrees

constexpr double launch_direction = 0.0;//degrees

constexpr double wind_speed = 10.0;//m/s

constexpr double wind_direction = 180.0;//degrees

using namespace std;

//angle unit conversion functions

double deg_to_rad(double degrees)

{

double radians = pi * degrees / 180.0;

while (radians >= 2 * pi) radians -= 2 * pi;

while (radians < 0) radians += 2 * pi;

return radians;

}

double rad_to_deg(double radians)

{

double degrees = 180.0 * radians / pi;

while (degrees >= 360.0) degrees -= 360.0;

while (degrees < 0.0) degrees += 360.0;

return degrees;

}

int main()

{

//x-component is horizontal velocity along the original launch path

//y-component is horizontal velocity perpendicular to original launch path

//z-component is vertical velocity

vector<double> velocity{ 0, 0, 0 };

vector<double> position{ 0, 0, 0 };

vector<double> wind{ 0, 0, 0 };

vector<double> acceleration{ 0, 0, -9.8 };

velocity[0] = launch_speed * cos(deg_to_rad(launch_angle)) * cos(deg_to_rad(launch_direction));//sets

x-velocity m/s

velocity[1] = launch_speed * cos(deg_to_rad(launch_angle)) * sin(deg_to_rad(launch_direction));//sets

y-velocity m/s

velocity[2] = launch_speed * sin(deg_to_rad(launch_angle));//sets z-velocity m/s

double speed = launch_speed;//sets velocity

wind[0] = wind_speed * cos(deg_to_rad(wind_direction));//sets x-velocity m/s

wind[1] = wind_speed * sin(deg_to_rad(wind_direction));//sets y-velocity m/s

double accel_drag; //initialization: how much speed lost due to drag

double dt = 0.001;

double air_time = 0;

//loop simulates projectile motion in air

do

{

//takes care of position change using velocity

position = vector_add(position, scalar_multiplication(dt, velocity));

air_time += dt;

//defines acceleration due to drag and gravity

vector<double> wind_relative_velocity = vector_subtract(wind, velocity);

accel_drag = 0.5 * drag_c * air_dense * x_area * pow(magnitude(wind_relative_velocity), 2) /

mass;

acceleration = scalar_multiplication(accel_drag, normalize(wind_relative_velocity));

acceleration[2] -= 9.8;

//changes velocity due to acceleration

velocity = vector_add(velocity, scalar_multiplication(dt, acceleration));

} while (position[2] > 0);//repeat while hasn't hit ground yet

//calculates landing position

position.pop_back();

double range = magnitude(position);

double landing_direction = rad_to_deg(atan2(position[1], position[0]));

//prepare output data

stringstream ss;

ss << setw(22) << "Mass: " << setw(10) << mass << " kilograms" << endl

<< setw(22) << "Drag Coefficient: " << setw(10) << drag_c << endl

<< setw(22) << "Air Density: " << setw(10) << air_dense << " kg/m^3" << endl

<< setw(22) << "Cross-sectional Area: " << setw(10) << x_area << " m^2" << endl

<< endl

<< setw(22) << "Launch Speed: " << setw(10) << launch_speed << " m/s" << endl

<< setw(22) << "Launch Angle: " << setw(10) << launch_angle << " degrees above horizontal"

<< endl

<< setw(22) << "Launch Direction: " << setw(10) << launch_direction << " degrees" << endl

<< setw(22) << "Wind Speed: " << setw(10) << wind_speed << " m/s" << endl

<< setw(22) << "Wind Direction: " << setw(10) << wind_direction << " degrees" << endl

<< endl

<< setw(22) << "Range: " << setw(10) << range << " meters" << endl

<< setw(22) << "Landing Direction: " << setw(10) << landing_direction << " degrees" << endl

<< setw(22) << "Air Time: " << setw(10) << air_time << " seconds" << endl;

cout << ss.str();

return 0;

}

Aiming Program
#include "ProjectileMotion.h"

#include "VectorMath.h"

#include <iostream>

#include <iomanip>

#include <sstream>

#include <cmath>

#include <thread>

#include <utility>

constexpr double target_range = 100;//meters

constexpr double target_direction = 0;//degrees (measures from North, going clockwise)

constexpr double wind_speed = 0;//m/s

constexpr double wind_direction = 0;//degrees (measures from North, going clockwise)

using namespace std;

//calculates the distance between two points on a 2-D plane

double find_distance(pair<double, double> location, pair<double, double> target)

{

return sqrt(pow(location.first - target.first, 2) + pow(location.second - target.second, 2));

}

//turns a polar coordinate into a rectangular coordinate

pair<double, double> polar_to_rect(double range, double direction)

{

return make_pair(range * cos(deg_to_rad(direction)), range * sin(deg_to_rad(direction)));

}

int main()

{

pair<double, double> target = make_pair(target_range*cos(deg_to_rad(target_direction)), target_range

*sin(deg_to_rad(target_direction)));

double range, direction;

double v_plus_range, v_plus_direction;

double v_minus_range, v_minus_direction;

double theta_plus_range, theta_plus_direction;

double theta_minus_range, theta_minus_direction;

double launch_speed = pow(target_range * 9.81, 0.5);

double launch_angle = 35;

double launch_direction = target_direction;

do

{

//simultaneously calculate 5 slightly-different projectile motions

thread t1(motion_calculation, launch_angle, launch_speed, launch_direction, wind_speed,

wind_direction, ref(range), ref(direction));

thread t2(motion_calculation, launch_angle, launch_speed + 0.05, launch_direction, wind_speed,

wind_direction, ref(v_plus_range), ref(v_plus_direction));

thread t3(motion_calculation, launch_angle, launch_speed - 0.05, launch_direction, wind_speed,

wind_direction, ref(v_minus_range), ref(v_minus_direction));

thread t4(motion_calculation, launch_angle, launch_speed, launch_direction + 0.5, wind_speed,

wind_direction, ref(theta_plus_range), ref(theta_plus_direction));

thread t5(motion_calculation, launch_angle, launch_speed, launch_direction - 0.5, wind_speed,

wind_direction, ref(theta_minus_range), ref(theta_minus_direction));

if (t1.joinable()) t1.join();

if (t2.joinable()) t2.join();

if (t3.joinable()) t3.join();

if (t4.joinable()) t4.join();

if (t5.joinable()) t5.join();

//if simulated motion is close enough to landing site

if (find_distance(polar_to_rect(range, direction), target) <= 1) break;

//derivatives of distance to landing site with respect to velocity and theta

double dd_dv = (find_distance(polar_to_rect(v_plus_range, v_plus_direction), target) -

find_distance(polar_to_rect(v_minus_range, v_minus_direction), target)) / 0.1;

double dd_dtheta = (find_distance(polar_to_rect(theta_plus_range, theta_plus_direction), target) -

find_distance(polar_to_rect(theta_minus_range, theta_minus_direction), target));

//use gradient descent to adjust launch speed and launch direction

launch_speed += dd_dv * (-0.01);

launch_direction += dd_dtheta * (-0.1);

} while (true);

//prepares output information

stringstream ss;

ss << output_parameters()

<< setw(22) << "Range: " << setw(10) << range << " meters" << endl

<< setw(22) << "Landing Direction: " << setw(10) << target_direction << " degrees" << endl

<< setw(22) << "Wind Speed: " << setw(10) << wind_speed << " m/s" << endl

<< setw(22) << "Wind Direction: " << setw(10) << wind_direction << " degrees" << endl

<< endl

<< setw(22) << "Launch Speed: " << setw(10) << launch_speed << " m/s" << endl

<< setw(22) << "Launch Angle: " << setw(10) << launch_angle << " degrees above horizontal"

<< endl

<< setw(22) << "Launch Direction: " << setw(10) << launch_direction << " degrees" << endl;

cout << ss.str();

 return 0;

}

Vector Math Functions
#pragma once

#include <vector>

using namespace std;

//vector addition and subtraction and multiplication

vector<double> vector_add(vector<double> vector1, vector<double> vector2)

{

vector<double> result;

for (int i = 0; i < vector1.size(); i++)

result.push_back(vector1[i] + vector2[i]);

return result;

}

vector<double> vector_subtract(vector<double> vector1, vector<double> vector2)

{

vector<double> result;

for (int i = 0; i < vector1.size(); i++)

result.push_back(vector1[i] - vector2[i]);

return result;

}

vector<double> scalar_multiplication(double scalar, vector<double> vector1)

{

vector<double> result;

for (int i = 0; i < vector1.size(); i++)

result.push_back(vector1[i] * scalar);

return result;

}

//returns magnitude of vector

double magnitude(vector<double> vector1)

{

double square_sum = 0.0;

for (int i = 0; i < vector1.size(); i++)

square_sum += pow(vector1[i], 2);

return pow(square_sum, 0.5);

}

//normalized vector (magnitude == 1)

vector<double> normalize(vector<double> vector1)

{

vector<double> result;

double size = magnitude(vector1);

for (int i = 0; i < vector1.size(); i++)

result.push_back(vector1[i] / size);

return result;

}

Vector Math Header File
#pragma once

#include <vector>

using namespace std;

//vector addition and subtraction and multiplication

vector<double> vector_add(vector<double> vector1, vector<double> vector2);

vector<double> vector_subtract(vector<double> vector1, vector<double> vector2);

vector<double> scalar_multiplication(double scalar, vector<double> vector1);

//returns magnitude of vector

double magnitude(vector<double> vector1);

//normalized vector (magnitude == 1)

vector<double> normalize(vector<double> vector1);

Most Significant Achievement
Our most significant achievement was creating a program that has real world

applications. While there were a number of ideas that we had that would have very few

applications in the real world, this project provides a solution to a problem that is frequently

faced in a number of applications throughout companies such as SpaceX with launches as well as

through numerous military applications. We were also able to create a program that could be

easily adapted to other problems, such as adding constant thrust to the model to make it able to

predict the landing sites of missiles with constant acceleration or thrust, or could be modified to

include the varying forces of gravity at different elevations so that it could be utilized to calculate

the crash site for fuel containers on rocket launches along with a slew of other applications.

Creating a program that is highly reliable, expandable, and applicable was our most significant

achievement.

Conclusions
The results shown above are a compilation of a number of different test scenarios in

which singular variables are changed to demonstrate different test scenarios. Each case has a

labelled difference between that case and the control case, or in some cases another case that is

specified. Each of these shows a number of things, including the optimal launch angle around 45

degrees, which is accurate, but shows the slight flaws in the program as the optimal launch angle

is not truly 45 degrees in reality. Using the equations previously mentioned the program

calculates to a relatively accurate degree the landing site of any projectile fired. In each of the

tables there is a value marked as “website data”. This data is what was found from online

calculators and other projection models, and is purely there for a reference to another model that

is available.

Recommendations
As our project draws to a close, there are a number of areas that we were unable to

address as a group that we believe future projects could probably end up improving on given

more time, resources, etc. First, the scope of our project is decently small, focusing only on one

specific aspect of physics. Although this area has numerous real world applications, the fact

remains that our research area only explored a very small area of research. The simplest way to

expand upon the scope of our project would have been to integrate it into some sort of specific

real world scenario, instead of just simply launching an object at random. Second, a concept that

we did not explore while developing our code was the idea of Reynold’s number, which

describes the motion of objects in liquids. In this case, air is considered to be a liquid, and

Reynold’s number would influence the way that projectiles travelled within it. Given the time

and resources we had, we were unable to integrate Reynold’s number into our code, but in the

future very advanced code about projectile motion would have to incorporate this concept. Third,

adding the feature of allowing different landing heights in our “projectile aiming” program

would expand the usability and versatility of the project, but would complicate the process of

choosing a launch angle. Incorporating the launch angle into our gradient descent calculations

would produce a near infinite number of solutions. Without a practical way to automatically

determine the launch angle, this option would be difficult to implement.

A simpler extension of our project includes changing our programs to treat air density

and gravitational acceleration as variables rather than constants. Although the changes in these

variables are negligible at ground level, adapting this program to greater altitudes (for example,

for use in orbital predictions or rocket return landings) would require gravitational acceleration

and air density to vary with altitude.

Acknowledgements
We would like to thank both Dennis Trujillo and Drew Einhorn for their feedback and

contributions to our project and their excellent feedback. A number of the additions to our

project came from their guidance and suggestions, and their contributions are greatly

appreciated.

